

Koordinationschemie mit den komplexen Chelatliganden [{Fe₂Cp₂(CO)₃}₂{CN[CH₂]_nNC}] (n = 2, 3). Heteropentanukleare "Superkomplexe" mit μ_5 -Diisocyanid-Brücken^{*}

Stephan Schrölkamp, Wilfried Sperber, Dieter Lentz und Wolf Peter Fehlhammer*^[+]

Institut für Anorganische und Analytische Chemie der Freien Universität, Fabeekstraße 34-36, D-14195 Berlin

Eingegangen am 24. September 1993

Key Words: Isocyanide-bridged metal complexes / Metal complexes as ligands / N-Protonation (alkylation, metalation) / Heteropentanuclear metal complexes / Diisocyanide bridges

Coordination Chemistry with the Complex Chelating Ligands [{Fe₂Cp₂(CO)₃}₂{CN[CH₂]_nNC}] (n = 2, 3). Heteropentanuclear "Supercomplexes" with μ_5 -Diisocyanide Bridges^{*}

The tetranuclear complexes $[\{Fe_2Cp_2(CO)_2(\mu-CO)\}_2\{\mu_4-CN[CH_2]_nNC\}]$ [n = 2 (**2**), 3 (**3**)] act as bidentate chelating ligands towards the Lewis-acidic metal halides $MnCl_2$, $MnBr_2$, $FeCl_2$, $CoCl_2$, $NiCl_2$, $NiBr_2$, $CuCl_2$, $CuBr_2$, $ZnCl_2$, ZnI_2 , $CdCl_2$, CdI_2 , $HgCl_2$, the chloro complexes $[MCl_2-(NCPh)_2]$ (M = Pd, Pt), $Zn(OAc)_2 \cdot H_2O$, and $[Mo(CO)_4(\eta-NBD)]$ (NBD = 2,5-norbornadiene) to give a total of 22 pentanuclear "supercomplexes" **6**–**21**, which have been characterized by elemental analyses and IR and NMR (¹H, ¹³C) spec-

tra. Reaction of **2** with $[Ni(COD)_2]$ in CH_2Cl_2 gave only rise to the dichloronickel(II) species **9a**. Very remarkably, the pentairon complex $[{Fe_2Cp_2(CO)_2(\mu-CO)}_2 | \mu_5 - CN(CH_2)_2 - NC]$ FeCl₂ (**7**) also formed spontaneously (!) when **2** was refluxed in chloroform for several hours. The X-ray structure analysis of $[{Fe_2Cp_2(CO)_2(\mu-CO)}_2 | \mu_5 - CN(CH_2)_2 NC]$ CdI₂ (**14b**) confirms the twofold $\mu_3 - (C,C,N)$ bridging mode of a diisocyanide ligand in a *cis/cis-anti*-configurated $[Fe_2]_2$ Cd pentanuclear system of crystallographic C_2 symmetry.

Isocyanide in Brückenposition unterscheiden sich dramatisch von terminal gebundenen, geometrisch wie chemisch. Zur CN-Bindungsaufweitung von ca. 10% und $125-130^{\circ}$ -Abwinkelung am Isocyanid-N-Atom gesellt sich die umgepolte, jetzt *N*-nucleophile Reaktivität des Brückenisocyanids^[1-5]. Es erscheint naheliegend und reizvoll, synthetisch daraus Nutzen zu ziehen, beispielsweise in *Cluster*- und Oberflächen-katalysierten Reaktionen von Isocyaniden, auch und besonders von funktionellen.

Treichel^[6] und Manning^[7–9] hatten mit ihren Protonierungen und Alkylierungen als erste auf die basischen und nucleophilen Eigenschaften des Brückenisocyanid-N-Atoms aufmerksam gemacht, und Manning war es auch, der Isocyanid-verbrückte Dieisen-Komplexe als *N*-Liganden gegenüber einfachen Metall-Ionen und typischen Lewissäuren erprobt hatte. Die erhaltenen, für systematische Isocyanidcluster-Synthesen hochinteressanten Addukte erwiesen sich jedoch als wenig stabil, und ihre Charakterisierung ließ Wünsche offen^[10–12].

Durch Ausnutzung des Chelateffekts konnten wir nun eine Reihe *stabiler* "Superkomplexe" dieses Typs einschließlich einer Röntgenstrukturanalyse des ZnCl₂-Adduktes an $[{Fe_2Cp_2(CO)_2(\mu-CO)}_2(\mu_4-CNC_6H_4NC)]$ (1) vorstellen und damit den μ_3 -(*C*,*C*,*N*)-Isocyanid-Verbrückungsmodus auch außerhalb von Clustermolekülen absichern^[13]. Den-

noch erscheinen die Ligandenqualitäten von 1 - seinRaumbedarf, seine Starrheit und sein nur mäßiges Donorvermögen stehen einer forcierten "Superkomplex"-Bildung entgegen – verbesserungswürdig. Im folgenden beschreiben wir Metallkomplexe mit den "Chelatliganden" [{Fe₂Cp₂-(CO)₃}₂CN[CH₂]_nNC] [n = 2 (2), 3 (3)], bei denen die genannten Defizite wesentlich gemildert sind.

Chem. Ber. 1994, 127, 621-629

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

^[+] Neue Adresse: Deutsches Museum, Museumsinsel 1, D-80538 München.

Ergebnisse und Diskussion

1. Die "Liganden" $|\{Fe_2Cp_2(CO)_3\}_2CN[CH_2]_nNC|$ (n = 2, 3). Protonierung und Alkylierung

Herstellung und Protonierung der Tetraeisenkomplexe 2 und 3 erfolgten in enger Anlehnung an Howell und Rowan, die diese und verwandte Spezies bereits 1981 beschrieben hatten^[14]. Im Hinblick auf die Ausbeute fanden wir allerdings die photochemisch-indirekte Substitution über das Acetonitril-Intermediat [Fe₂Cp₂(NCMe)(CO)₃] der thermischen überlegen (Exp. Teil). Im Gegensatz zum starren, ausschließlich in der Isocyanid-verbrückten Form vorliegenden $[{Fe_2Cp_2(CO)_2(\mu-CO)}_2(\mu_4-CNC_6H_4NC)]$ sind die aliphatischen Diisocyanid-Komplexe 2 und 3 NMR-spektroskopischen Untersuchungen zufolge in Lösung fluktuierend und existieren hauptsächlich in den isomeren Formen Brücke/ Brücke und Brücke/terminal (2) bzw. Brücke/terminal und terminal/terminal (3). Dazu ist mit dem Auftreten von cis/ trans-Isomerie in den Fe₂Cp₂(CO)₃-Einheiten zu rechnen, die jedoch in den NMR-Spektren nicht zu beobachten war^[14].

Wie 1 ist auch 2 nur *di*protonierbar, wobei an den Produkten 4a-c die im Vergleich zu Mannings protonierten Monoisocyanidderivaten [Fe₂Cp₂(CO)₃CN(R)H]PF₆ [δ (NH) ca. 3] extrem entschirmten NH-Protonen (δ ca. 14) überraschen^[8,15]. Die Analogie zu 1 erstreckt sich jedoch nicht auf die Methylierung, die dort – vermutlich aus sterischen Gründen – nur zum einfach methylierten Produkt, hier dagegen zum Bis(μ_2 -aminocarbin)-Komplex 5, einem 2:1-Elektrolyten in Aceton, führt.

Allgemein entfällt bei *N*-protonierten^[8], -alkylierten^[9] und -acylierten^[16] Isocyaniddieisen-Spezies die Brücke \Leftrightarrow terminal-Isomeriemöglichkeit nach dem Adams-Cotton-Mechanismus, der ein paarweises Öffnen der Brücken vorsieht^[1,17]. Dies spiegeln bereits die einfachen IR-Spektren wider (Tab. 1). Die fünf Cp-Signale in den ¹H- und ¹³C-NMR-Spektren von 5 sind deshalb mit dem Vorliegen von mindestens zwei Stereoisomeren zu erklären, die sich durch die relative Anordnung der terminalen Liganden der [Fe₂]-Einheiten (*cis/cis, cis/trans, trans/trans*) unterscheiden (siehe auch unter 2.). Zwei Cp- (und [¹³C]CO_t-)Signale sind dabei schon aufgrund der Inäquivalenz der Eisenatome im Strukturelement **A** (E = Elektrophil) zu erwarten und geben wohl im Falle der protonierten Verbindungen **4** zu den sehr verbreiterten [¹H]Cp-Resonanzen Anlaß (siehe Tab. 2 und 3 sowie Kap. 2).

4a und 5 sind ferner durch die pos-FAB-Massenspektren mit Molekülpeak, CO-Fragmentierung und weiteren plausiblen Abbauprodukten charakterisiert (Exp. Teil).

2. Metallkomplexe mit den zweizähnigen N,N'-Chelatliganden { μ_4 -CN[CH₂]_nNC}[Fe₂]₂ (n = 2, 3)

Eine Vielzahl von Metallkomplexen vermag als *Chelatligand* zu fungieren. Meistens sind es einkernige Spezies mit einem ausgedehnteren Ligandensystem, von denen beispielhaft nur die Metallodithiocarboxylate $\mathbf{B}^{[18]}$ und die in 4und 5-Position funktionalisierten carbenoiden Imidazolkomplexe C aus den eigenen Arbeiten genannt seien^[19]. Ferner sei an Lukeharts^[20] höchst einfach aus Metallcarbonylen zu synthetisierende Bis(acyl)-Systeme D erinnert sowie an Kläuis vielverwendbaren Tripod-Liganden $\mathbf{E}^{[21]}$.

Die Tetranuklearität unserer komplexen Chelatliganden 1-3 ist nun keineswegs eine willkürliche Komplizierung, sondern notwendige Voraussetzung für die Superkomplexbildung mit sehr kurzkettigen Diisocyaniden^[22]. Erst ihre Einbindung in zwei separierte Brückenfunktionen – bei den überwiegend in der terminalen Form vorliegenden fluktuierenden Strukturen 2 und 3 genügt im Unterschied zum starren 1 bereits die prinzipielle Möglichkeit dazu (!) – macht sie zum zweizähnigen N,N'-Liganden.

Insgesamt stellen wir 22 pentanukleare Chelatkomplexe vor, die wir durch Koordination von 2 und 3 an diverse Metall(II)-halogenide oder -acetate, Halogeno-Komplexe und Molybdäncarbonyl nach jeweils auf den speziellen Fall zugeschnittenen Vorschriften synthetisierten. Typischerweise wurden die Metallhalogenide in einer Dichlormethanlösung der "Liganden" suspendiert oder als alkoholische Lösung einbracht. Das sodann binnen kurzem ausfallende, häufig in sämtlichen Solvenzien unlösliche Produkt war in der Regel bereits analysenrein. Um die eingetretene Komplexbildung *direkt* zu belegen, wurden vielfach Metallanalysen herangezogen (Tab. 4).

Dank ihrer chelatartigen Natur sind die Komplexe 6–21 in kristalliner Form und mitunter sogar in CH₂Cl₂- oder THF-Lösung einige Stunden stabil, dissoziieren jedoch in Dimethylsulfoxid relativ schnell in die Ausgangskomponenten (2, 3) und Metallhalogenid. Die IR-Spektren sind mit ihren im Vergleich zu 2 bzw. 3 stark langwellig verschobenen v(CN)_B-Banden (-130 cm⁻¹) und wesentlich geringer aber eindeutig frequenzerhöhten v(CO)_t- und v(CO)_B-Banden (+20 cm⁻¹) aussagestark. Diese Koordinationsverschiebungen fallen zwar um vieles deutlicher aus als bei den 1,2-Diisocyanbenzol-Superkomplexen, erreichen bezeichnenderweise jedoch nicht ganz die Werte der "echten" dikationischen μ_2 -Aminocarbin-Spezies 4 und 5, die noch-

	Phase	v(CO _t) ^[a]	v(CO _B) ^[a]	v(C=N <b)< th=""><th></th><th>Phase</th><th>v(CO_t)^[a]</th><th>v(CO_B)^[*]</th><th>v(C=N<b)< th=""></b)<></th></b)<>		Phase	v(CO _t) ^[a]	v(CO _B) ^[*]	v(C=N <b)< th=""></b)<>
2 ^[b]	KBr	1974 vs, br., 1945 vs	1785 s		12a	Nujoi	1978 vs, br., 1952 s,	1808 vs, 1790 m	1620 s, 1590 s
	CH ₂ Cl ₂	1985 vs, 1944 s	1782 s			KD.	1941 m	1804	1616 1506
3[0]	KBr	1971 ve 1939 ve	1772 m 1758 s			KBr	1986 vs, dr., 1965 s	1804 vs	1614 s, 1586 s
	КЫ	1971 43, 1937 43	1772 11, 1750 3		125	Nujol	1975 vs. 1938 s	1809 s. 1786 m	1622 s. 1595 s
4a [d]	Nujol	2019 vs	1829 vs	1541 s		KBr	1981 vs, 1940 s	1804 vs, 1790 sh	1618 vs. 1596 s
	KBr	2015 vs, 1980 sh	1827 s	1570 s				- 1	,
					13a	KBr	1998 vs, 1983 vs, 1956 s	1 8 09 vs, 1782 sh	1627 w. 1588 vs
4b[e]	Nujol	2008 vs, 1975 s	1830 vs,	1574 vs			1000 1000 1000		
	KBr	2011 vs, 1978 s	1830 vs	1575 vs	136	Nujoi	1998 vs, 1987 vs, 1956 s	1811 s	1623 w, 1574 s, br
4 -10	Nutat	2012	1935 10	1567 10		KBr CU CI	2003 vs, br., 1958 s	1808 vs	1624 w, 1580 vs
4 C ¹¹	Nujoi K Br	2013 VS, 1984 VS 2015 VS, 1982 S	1023 VS 1827 VS	1568 vs		CH_2CI_2	2006 vs, 1962 m	1805 s, 1785 sh	1582 vs
	ΚĐΙ	2013 VS , 1982 S	1027 43	1508 43	13c[b]	Nuiol	1986 vs hr 1948 s	1794 vs	1593 ve br
5	Nuiol	1999 vs. br. 1975 sh	1818 vs	1559 s		KBr	1986 vs br 1948 s	1795 vs	1591 vs. br
	KBr	2011 vs, 1980 sh	1823 vs	1563 s		CH ₂ Cl ₂	2007 vs, 1985 vs	1795 s	1598 vs, br.
6a	Nujol	1993 s, 1980 vs, 1952 s	1812 s, 1789 m	1624 w, 1592 vs	14a	Nujol	1994 sh, 1981 vs, 1951 s	1812 s, 1789 m	1619 m, 1589 s
	KBr	1983 vs, br., 1956 s	1808 s, 1790 m	1623 w, 1587 vs	1	KBr	1995 vs, 1983 vs, 1953 s	1809 vs, 1795 sh	1617 m, 1589 vs
6b	Nujol	1985 vs, br., 1956s	1814 s, 1792 m	1618 w, 1577 s	14b	Nujol	1993 vs, br., 1958 s	1815 vs, 1796 s	1616 s, 1585 vs
	KBr	2001 vs, 1984 vs, br., 1958 s	1809 s, 1792 m	1620 m, 1581 vs		KBr	1995 vs, br., 1958 s	1816 m, 1795 vs	1617 m, 1583 vs
-		1002 1070 1050	1010 . 1700	1(20	15	Nujol	1992 s, 1979 vs, 1955 m	1812 s, 1788 m	1591 m, 1579 m
/	Nujoi	1993 s, 1979 vs, 1950 s	1810 S, 1788 m	1629 w, 1589 s, 1579 s		KBr	1995 vs, 1982 vs, 1956 s	1807 vs	1584 vs
	KBr	1990 vs. br., 1956 s	1807 vs. 1791 sh	1626 s, 1583 vs	16[ij]	Nujol	1986 vs, 1947 s	1808 s, 1784 w	1610 w, 1579 vs
		·····		,		KBr	1993 vs, 1951 s	1814 s, 1791 s	1608 sh, 1579 vs
7[g]	Nujol	1995 m, 1980 vs, 1952 s	1808 s, 1788 s	1586 vs, br.					,
	KBr	1993 s, 1982 vs, 1954 s	1807 vs, 1798 s	1629 s, 1581 vs	17	Nujol	1982 vs, br., 1963 s	1815 vs, 1804 m. 1785 m	1602 vs
8	KBr	1999 s, 1987 vs, 1961 s	1813 s, 1793 m	1635 w, 1579 vs					
					18	Nujol	1982 vs, br., 1964 s	1814 s, 1785 m	1599 vs, br.
9a	Nujol	1992 vs, 1980 vs, 1957 s	1812 s, 1789 m	1603 s, 1595 s		KBr	1994 vs, br., 1969 s	1819 s, 1790 m	1602 vs
	KBr	1990 vs, br., 1957 s	1807 vs, 1795 sh	1598 vs			1000 1000 1077		
~	N · 1	1000 1057 -	1911 - 1700	1690 1/2	19	Nujol	1993 vs, 1982 vs, 1961 s	1804 vs, 1798 m	1589 s
9D	NUJOI	1990 VS, 1957 S	1811 S, 1790 m	1502 vs		KBr	1994 vs, br., 1965 s	1805 vs	1588 vs
	KBI	2000 VS, 8E., 1938 m	1807 S, 1793 Sh	1392 VS	20	Nuiol	2002 ve br 1962 s	1800 c 1700 m	1580 -
10	Nuiol	1998 vs 1978 s	1802 vs 1785 s	1601 s 1572 s	20	KBr	2002 vs. 01., 1902 s 2006 vs. 1997 vs. 1967 s	1808 s	1505 6
10	KBr	2001 vs 1975 vs br	1801 vs br	1596 s 1571 s]	κD,	2000 vs, 1777 vs, 1707 s	1000 3	1373 3
	CH ₂ Ch	2011 vs. 1990 s	1806 vs	1596 m, 1581 s	21	Nujol	1987 vs, br., 1958 s	1805 s, 1792 m	1605 vs
		,		,		KBr	1991 vs, br., 1961 s	1804 s, 1791 s	1600 vs
11	Nujol	1984 vs, br., 1954 m	1810 vs	1587 s				<i>,</i>	
	KBr	1996 vs, br	1807 s	1577 s					

Tab. 1. Charakteristische IR-Daten [cm⁻¹]

^[a] t = terminal, B = Brücke. $^{[b]}$ Weitere Banden (KBr): 2128 cm⁻¹ s [v(CN_i)], 1727 vs, br. [v(CN_B)]; (CH₂Cl₂): 2133 m [v(CN_i)], 1743 vs, 1712 sh [v(CN_B)]. $^{[c]}$ Weitere Banden (KBr): 2123 cm⁻¹ s [v(CN_i)], 1740 vs, br. [v(CN_B)]. $^{[d]}$ Weitere Banden (KBr): 3229 cm⁻¹ w, 2798 w, br. [v(NH)]. $^{[e]}$ Weitere Banden (KBr): 2734 cm⁻¹ m, br. [v(NH···CI)]. $^{[f]}$ Weitere Banden (KBr): 2795 cm⁻¹ m, br. [v(NH···CI)]. $^{[f]}$ Weitere Banden (KBr): 2795 cm⁻¹ m, br. [v(NH···I]]. $^{[e]}$ Produkt aus Umsetzung in CHCl₃. $^{[h]}$ Weitere Banden (Nujol): 3484 cm⁻¹ m [v(H₂O)], 1593 vs, br. [v(CO₂)]; (CH₂Cl₂): 1598 vs, br. [v(CO₂)]. $^{[i]}$ Weitere Banden (Nujol): 2009 cm⁻¹ s, 1857 vs, 1757 s (?) [v(CO) {Mo(CO)₄}]; (KBr): 1880 w, 1855 vs, 1766 s (?) [v(CO) {Mo(CO)₄}]. $^{[i]}$ Zum Vergleich: [Mo(CO)₄NBD] (Nujol): 2045 cm⁻¹ s, 1955 vs, br., 1892 vs, br. [v(CO)]; (KBr): 2037 s, 1939 vs, br., 1861 vs, br. [v(CO)].

Chem. Ber. 1994, 127, 621-629

mals $20-30 \text{ cm}^{-1}$ tiefer bzw. höher liegen (Tab. 1). Gleichermaßen auf "halbem Weg" zwischen δ ca. 250 (**2**, **3**) und ca. 320 (**4**, **5**) stehen bleiben auch die ¹³C-NMR-chemischen Verschiebungen der μ_2 -Isocyanid/ μ_2 -Aminocarbin-Kohlenstoffatome der Lewissäure-Addukte (Tab. 3).

Die maximal vier ¹H- und ¹³C-NMR-Signale für die Cp-Liganden der "Superkomplexe" – in den Fällen, in denen nur zwei Signale aufgelöst sind, sind diese jeweils auffallend breit – zeigen die Anwesenheit von zwei oder mehr Isomeren in z.T. sehr unterschiedlichen Konzentrationen (10, 19) an (Tabellen 2 und 3). (Die wenigen NMR-Daten intakter μ_5 -1,2-Diisocyanbenzol-Komplexe enthielten demgegenüber nur die schon für *ein* Isomeres mindestens zu erwartenden Dubletts, so daß dieser Gesichtspunkt dort nicht weiter verfolgt wurde.) Prinzipiell ist bei vier chiralen Eisenzentren zunächst von 2⁴ Stereoisomeren oder acht Enantiomerenpaaren auszugehen, deren Anzahl sich jedoch wegen

der paarweise gleichartigen Ligandenumgebungen auf zwei *meso*-Formen (*cis/cis-syn*, *trans/trans-syn*^[23]) und vier Enantiomerenpaare (*cis/cis-anti*, *trans/trans-anti*, $2 \times cis/trans$) verringert.

Von den genannten Isomeren lassen die *meso*-Formen sowie die *cis/cis-anti-* und die *trans/trans-anti-*Spezies zwei intensitätsgleiche Cp-Signale, der Rest vier mit Intensitätsverhältnis 1:1:1:1 erwarten, wobei zufällige Koinzidenzen und ungenügende Auflösung wahrscheinlich sind. Trotzdem sprechen die NMR-Spektren eher gegen die Anwesenheit von *cis/trans*-Isomeren, selbst in geringer Konzentration. Mit Sicherheit verifiziert sind auf der anderen Seite nur die röntgenstrukturanalytisch erfaßten *trans/trans-syn-* und *cis/cis-anti-*Formen (siehe Abschnitt 3 und Lit.^[13]).

Ein aus dem Rahmen fallender Komplex ist das pseudooktaedrische Tetracarbonyl([Fe₄]-chelat)molybdän(0) (16), das allerdings noch weiterer Absicherung bedarf. So konnten infolge seiner Zersetzlichkeit in halogenierten Kohlenwasserstoffen und der dadurch sehr begrenzten ¹³C-NMR-Meßzeit die terminalen CO-Liganden der Mo(CO)₄-Einheit nicht gefunden werden; im IR-Spektrum lassen sich jedoch zusätzliche, d.h. nicht zum [Fe₄]-Chelatliganden gehörige

Tab. 2. Ausgewählte ¹H-NMR-Spektren^[a]

	Solvens	η-C ₅ H ₅	CH ₂
4a ^[b]	[D ₆]DMSO	5.36 (br., 20H)	4.70 (br., 4H)
4 b [b]	[D ₆]DMSO	5.28 - 5.55 (br., 20H)	4.85 (br., 4H)
4c ^[b]	[D ₆]DMSO	5.39 (br., 20H)	4.53 - 4.97 (br., 4H)
5]b]	[D ₆]DMSO	5.38 (s), 5.44 (s), 5.50 (s), 5.57 (s)	5.03 (s, 2H), 5.12
	[D ₃]Acetonitril	5.62 (s), [1 1 1 1 1 2 4 2 μ , (201) 5.41 (br., 20H)	(s, 2H) 4.92 (br., 4H)
6b	[D ₈]THF	5.14 (s), 5.16 (s), [1.5 : 1] ^[c] , (10H) 5.38 (s), 5.39 (s), [1.5 : 1] ^[c] , (10H)	4.20 (br., 2H), 4.74 (br., 2H)
10	CD ₂ Cl ₂	4.86 (s), 4.88 (s), [1 : 16] ^[c] , (10H) 5.35 (s), 5.39 (s), [1 : 16] ^[c] , (10H)	4.26 (m, br., 2H), 4.98 (m, br., 2H)
11	CD ₂ Cl ₂	4.96 (s, 5H), 5.03 (s, 5H) 5.38 (s, 5H), 5.44 (s, 5H)	4.27 (br., 2H), 4.74 (br., 2H)
12a	CD_2Cl_2	5.09 (s, br., 10H), 5.33 (s, br., 10H)	4.21 (br., 2H), 4.92 (br., 2H)
13b	[D ₈]THF	5.11 (s), 5.14 (s), $[5.5 : 1]^{[c]}$, (10H) 5.41 (s), 5.43 (s), $[5.5 : 1]^{[c]}$, (10H)	4.17, 4.21 (d, 2H), 4.82, 4.85 (d, 2H)
13c ^[d]	CD ₂ Cl ₂	4.90 (s, br., 10H), 5.08 (s, br., 10H)	3.89 (br., 2H), 4.24 (br., 2H)
14b	CDCl ₃	4.89, 4.93, [5 : 1] ^[c] , (10H) 5.18, 5.20, [5 : 1] ^[c] , (10H)	4.07, 4.11 (d, 2H), 4.61, 4.65 (d, 2H)
16	CD_2Cl_2	4.98 (s), 5.02 (s), 5.18 (s), 5.21 (s), [1.5 : 1.5 : 1 : 1] ^[c] , (20H)	4.18 (m, br., 2H), 4.70 (br., 2H)
19	[D ₆]DMSO	5.18, 5.27, [1 : 8] ^[c] , (10H) 5.60, 5.65, [1 : 8] ^[c] , (10H)	
20	[D ₈]THF	5.12 (s, br., 10H), 5.42 (s, br., 10H)	2.08 (m, br., 2H), 4.24 (m, br., 2H), 4.66 (m, br., 2H)
21	CD ₂ Cl ₂	4.98 (s, br., 1011), 5.27 (s, br., 10H)	2.09 (m, br., 2H) 2.09 (m, br., 2H), 4.08 (m, br., 2H), 4.55 (m, br., 2H)

^[a] δ -Werte, int. Standard SiMc₄. – ^[b] Weitere Signale ([D₆]DMSO): 4a, 13.20 (br., 2H, NH); 4b, 14.85 (br., 2H, NH), 4c, 13.18 (br., 2H, NH), 5, 4.16 (s), 4.28 (s), 4.38 (s) [1:1:1] (6H, CH₃). – ^[c] Signalintensitätsverhältnis. – ^[d] Weiteres Signal (CD₂Cl₂): 13c, 2.03 (s, br., 6H, CH₃).

CO-Valenzschwingungen ausmachen, die zu niedrigen Wellenzahlen hin verschoben sind (Tab. 1)^[24].

Die entfernte Ähnlichkeit zwischen den [Fe₄]-Chelatliganden 2 (3) und 1,4-Diazabutadienen, die auch Metalle in niedrigen Wertigkeitsstufen ohne weitere π -Akzeptoren zu stabilisieren vermögen^[25], veranlaßte uns, die Chelatisierung von Nickel(0) zu versuchen. Die Umsetzung von 2 mit [Ni(COD)₂] im Verhältnis 2:1 sollte gegebenenfalls sogar zum neunkernigen neutralen Bischelat führen. Das ausfallende hellrote Produkt entpuppt sich jedoch als Verbindung 9a; demnach hat eine Reaktion mit dem Lösungsmittel CH₂Cl₂ stattgefunden, in deren Verlauf Nickel(0) zu Nickel(II) oxidiert wurde.

Ein höchst überraschendes Ergebnis, das gleichzeitig eine unerwartet hohe Bildungstendenz und relative Stabilität des hier vorgestellten pentanuklearen Komplextyps widerspiegelt, förderte das mehrstündige Erhitzen von 2 in Chloroform zutage, von dem wir uns Aufschluß über die bei Spektrenaufnahmen beobachteten Zersetzungsreaktionen erhofft hatten. Der entstandene Niederschlag erwies sich als

	Solvens	μ-C=N+<	μ-CO	COt	η-C ₅ H ₅	CH ₂	CH ₃
4a	[D ₆]DMSO	319.04	255.64	207.02	88.00 (br.)	55.85	
5	[D ₆]DMSO	322.20	255.90	208.60, 209.00 [1 : 1] ^[b]	87.50, 88.00, 89.83, 90.19, 90.50 [1 : 1 : 1 : 3 : 3] ^[b]	63.40, 63.60 [1 : 2] ^[b]	52.40, 52.60 [2 : 1] ^[b]
10	CD ₂ Cl ₂	290.30[c]	263.17	210.43, 211.22 [1 : 1] ^[6]	88.12, 88.54 [1 : 16] ^[b] 90.47, 91.07 [1 : 16] ^[b]	68.14	
11	$1 CD_2Cl_2$				88.72, 89.43, 90.57, 91.10 [1 : 1 : 1.5 : 1] ^[b]		
13b	[D ₈]THF	292.75	264.98	210.38, 211.83	88.90, 90.27 [1 : 1] ^[b]		
13c	CD ₂ Cl ₂			210.30, 212.40	87.93 (br.), 89.43 (br.) [3.5 : 1] ^[b]	65.60	17.64 (?)
14b	CD_2Cl_2	2 89 .52	265.11	209.55, 210.52	88.05, 89.73 [1 : 1] ^[b]	67.72	
16	CD ₂ Cl ₂				87.80, 87.95, 89.70, 90.17 [4 : 2 : 1 : 4] ^[b]	70.76	
20	[D ₈]THF	290.63	265.19	211.18, 212.50	88.96, 90.48 [1 : 1] ^[b]	62.50, 29.74	
21	CD_2Cl_2	287.34	265.56	210.25, 211.86	88.01, 89.81 [1 : 1] ^[b]	61.59, 29.82	

Tab. 3. Ausgewählte ¹³C{¹H}-NMR-Spektren^[a]

^[a] δ-Werte, int. Standard SiMe₄. - ^[b] Signalintensitätsverhältnis. - ^[c] Messung in [D₆]DMSO.

identisch (!) mit dem aus 2 und Eisen(II)-chlorid synthetisierten Pentaeisen-Komplex 7. Offensichtlich wird unter den Reaktionsbedingungen die metallorganische [Fe₂]-Einheit oxidativ vollständig abgebaut, so daß sie als "anorganische" FeCl₂-Quelle für die spontane Bildung von 7 dient. Über die oxidative Monomerisierung der [Fe₂Cp₂(CO)₃L]-Zentren in 1 und 2 mittels Iod wurde berichtet^[13,14]. Auch die Umsetzung von 2 mit HgCl₂ zu 15 ist von extensiver Spaltung des vierkernigen in zwei- und einkernige Eisenkomplexe begleitet^[11a].

Wohl aufgrund der ungünstigeren Sechsringgeometrie der gebildeten Chelatkomplexe reagiert 3 mit Metall(II)-halogeniden sehr viel weniger glatt als 2.

3. Röntgenstrukturanalyse von 14b

Der pentanukleare Komplex 14b besitzt kristallographische C_2 -Symmetrie, wobei die zweizählige Achse durch das Cadmiumatom und den Mittelpunkt der C5-C5'-Bindung verläuft (Abb. 1). Einige der auffälligsten Asymmetrien im μ_4 -Diisocyanbenzol-tetraeisen-ZnCl₂-Addukt 22 wie beispielsweise die beiden um 17 (!) differierenden Zn-Cl-Bindungslängen entfallen damit für 14b. Die auch hier hohe Gruppenhäufung im Molekül - auf der anderen Seite weist das Kristallgitter große Löcher auf, die mit Lösungsmittelmolekülen (CH_2Cl_2) aufgefüllt sind – wird durch (a) die in Komplexen des Typs [Fe₂Cp₂(CO)₃L] in der Regel favorisierte cis-Konfiguration und die anti-Anordnung der Cpund CO_t-Liganden beider dinuklearer Einheiten, (b) ein "puckering" (Faltung) der Fe₂C₂-Vierringe um 160.4(4)° längs des Fe1…Fe2-Vektors, das den Zweck verfolgt, die Cp-Liganden aus dem zentralen Koordinationsbereich nach oben oder nach unten herauszubewegen und (c) die "en-ähnliche", vor allem durch den Torsionswinkel

N-C5-C5'-N' [58.9(9)°] beschriebene helicale Twist-Konformation des Chelat-Fünfringes und den damit gekoppelten Verlust der Koplanarität der beiden [Fe₂(μ -CO) μ -CN]-Einheiten aufgefangen und partiell kompensiert.

Die gefundene "sinnvolle" Symmetrie (zu der auch ein mit einer pseudotetraedrischen Anordnung um Cadmium harmonierender N-Cd-N'//[-Cd-I'-Interplanarwinkel von 90.7(2)° gehört [vgl. damit die 67.3(2)° in**22**]), die elektronisch vorteilhafte*cis*-Geometrie^[26] und damit im Endeffekt wohl auch die gegenüber 1 deutlich besseren Ligandeneigenschaften von**2**dürften im wesentlichen also der Flexibilität und dem geringeren Raumbedarf der aliphatischen C₂H₄-Kette zu verdanken sein. Erkauft wird dies freilich mit einem nochmals um 5° kleineren "Biß" des Chelatliganden. So liegt der N-Cd-N'-Winkel mit 77.3(2)° – d.i. eine 32.2°-Abweichung (!) vom Tetraederwinkel – absolut an der unteren Grenze derartiger Chelatringparameter^[13,27]. Der I-Cd-I'-Winkel [117.79(4)°] ist dafür geringfügig aufgeweitet.

Von Interesse ist ferner der moderat aufgeweitete $[Fe_2]C \rightarrow N(R)Cd$ -Abstand, der mit 1.256(9) Å ziemlich genau die Mitte zwischen den $[Fe_2]C \rightarrow NR$ -Bindungslängen von Isocyanidbrücken (z.B. in *cis-anti*-[FeCp(CO)(μ -CNMe)]₂: 1.226(8), 1.216(8) Å^[2]; *trans-anti*-[FeCp(CO)(μ -CNPh)]₂: 1.229(4) Å^[3]; *trans-anti*-[FeCp(μ -CNPh)-(CNPh)]₂: 1.242(8) Å^[5]) und den maximal aufgeweiteten $[Fe_2]C \rightarrow N(R)E$ -Abständen der *N*-protonierten und -alkylierten Isocyanidbrücken (z.B. in *cis*-[Fe₂Cp₂(CO)₂(μ -CO){ μ -CN(Me)H}]BF₄: 1.28(1) Å^[8]; *cis*-[Fe₂Cp₂(CO)(μ -CO)(CNMe)(μ -CNMe₂)]BPh₄: 1.303(7) Å^[28]; *cis*-[Fe(η -C₅H₄CH₃)(CO)(μ -CNMe₂)]₂(SO₃CF₃)₂: 1.289(7), 1.301(6) Å^[28]) einschließlich des *N*-protonierten μ ₂-Isoblausäure-Liganden in *cis*-[Fe₂Cp₂(CO)₃(μ -CNH₂)]Cl [1.279(4) Å]^[29]

Abb. 1. ORTEP-Zeichnung von **14b**; die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit; ausgewählte Bindungslängen [Å]: Cd-I 2.7004(9), Cd-N 2.299(6), Fe1-Fe2 2.513(1), Fe1-C4 1.916(7), Fe2-C4 1.890(7), C4-N 1.256(9), N-C5 1.490(9), C5-C5' 1.485(13); ausgewählte Bindungs- und Torsionswinkel [°]: C3-Fe1-C4 95.6(3), Fe1-C4-N 138.5(5), N-Cd-N' 77.3(2), I-Cd-I' 117.79(4), C4-N-C5 121.8(6), Fe-C4-N-C5 4(1), N-C5-C5'-N' 58.9(9), Fe2-C4-N-Cd -174.6(7)

trifft. Zumindest in diesem Punkt korrespondieren also die Röntgenstrukturdaten bestens mit den IR- und NMR-Spektren, die für die Koordinationsverbindungen gleichfalls "mittlere" (CN)-Banden- und -Signallagen ergeben hatten (siehe 2).

Die übrigen Bindungsparameter, z.B. Fe…Fe = 2.513(1)Å, bewegen sich im Rahmen üblicher Größenordnungen (Abb. I, Legende)^[1]. Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und dem Graduiertenkolleg "Synthese und Strukturaufklärung niedermolekularer Verbindungen" für die finanzielle Förderung dieser Untersuchungen. Herrn B. Behrens sei für die diversen Metallanalysen, Herrn Dr. A. Schäfer für NMR-Messungen am 500-MHz-Gerät und Herrn M. A. Fehlhammer für Formelzeichnungen gedankt.

Experimenteller Teil

Alle Reaktionen wurden unter Schutzgas in nach üblichen Methoden gereinigten Lösungsmitteln durchgeführt. – Chromatographische Trennungen: Kieselgel (Fa. Merck, 0.100-0.200 mm, aktiv). – HBF₄ (in Ether), HI (wäßrige Lösung) und [Et₃O][BF₄] wurden im Handel bezogen, die Ausgangskomplexe [FeCp(CO)₂]₂, [Mo(CO)₄NBD] (NBD = 2,5-Norbornadien), [PdCl₂(NCPh)₂], [PtCl₂(NCPh)₂] und [Ni(COD)₂] wie in Lit.^[30] beschrieben synthetisiert. – IR: Perkin-Elmer IR 983. – NMR: Bruker AM 270 und AM 500^[31]. – MS: Finnigan (Varian) Mat 711. – Leitfähigkeit: Metrohm E518, EA 608-c-Meßzelle (Kalibrierung, 0.1 M wäßrige KBr-Lösung). – Elementaranalysen: CHN-Rapid, Heraeus, (die eingerechneten Lösungsmittelgehalte wurden ¹H-NMR-spektroskopisch ermittelt); Metallanalysen: AAS, Philips SP9. – Schmelzund Zersetzungspunkte (unkorrigiert): Gallenkamp Melting Point Apparatus oder Büchi Modell 510.

1. $(\mu_4-I, 2-Diisocyanethan)bis[tricarbonylbis(cyclopentadienyl)$ dieisen] (2) und $(\mu_4$ -1,3-Diisocyanpropan)bis[tricarbonylbis(cyclopentadienvl)dieisen] (3): Eine Lösung von 4.20 g (11.86 mmol) [FeCp(CO)₂]₂ in 350 ml Acetonitril wird in eine Photolyseapparatur gebracht, auf -20°C gekühlt und 12 h bestrahlt. In diesem Zeitraum entwickeln sich ca. 270 ml CO, und man beobachtet einen Farbumschlag von Rot nach Dunkelgrün^[32]. Jetzt fügt man 0.50 g (6.25 mmol) 1,2-Diisocyanethan bzw. 0.60 g (6.25 mmol) 1,3-Diisocyanpropan hinzu, läßt 3 h bei Raumtemp. rühren, entfernt dann das Lösungsmittel, extrahiert den weinroten Rückstand mit CH_2Cl_2 und chromatographiert an Kieselgel (40 \times 3-cm-Säule, Petrolether, Wasserkühlung). Beginnend mit einem 1:1-Petrolether/ Ether-Gemisch, das im weiteren Verlauf der Chromatographie bald durch reinen Ether ersetzt wird, trennt man zunächst [FeCp(CO)2]2 und grünes [Fe₂Cp₂(NCMe)(CO)₃] ab. Dann eluiert man Verbindung 2 bzw. 3 als dunkelrote Fraktion mit Ether/THF (Verhältnis 3:1 bis schließlich 100% THF) und kristallisiert aus CH2Cl2/n-Hexan um. Weinrote Mikrokristalle (2: 3.46 g, 80%; 3: 3.60 g, 81%).

2. $[\mu$ -1,2-Ethandiylbis(ammoniomethylen)]bis[tricarbonylbis-(cyclopentadienyl)dieiesen]-bis(tetrafluoroborat) (4a) und -dichlorid (4b): Eine Lösung von 0.50 g (0.68 mmol) 2 in 40 ml CH₂Cl₂ wird mit 0.23 ml (1.7 mmol) einer 54proz. HBF₄/Ether-Lösung oder 0.50 ml (1.7 mmol) einer 3.4 M etherischen HCl-Lösung versetzt und 3 h gerührt. Dann wird die hellrote Lösung auf ca. 10 ml eingeengt, Ether (2 ml) hinzugefügt, das ausfallende hellrote Pulver auf einer Fritte gesammelt, dreimal mit Ether gewaschen und im Hochvakuum getrocknet. Ausb. 0.53 g (85%) 4a bzw. 0.48 g (82%) 4b. Leitfähigkeiten (ca. 2.0 · 10⁻⁴ M Lösung in Aceton, 20°C): S =162.5 (4a) bzw. 49 cm/mol (4b). – MS (pos-FAB) (4a), *mlz* (%): 733 (5) [M]⁺, 583 (2) [M – FeCp – CO]⁺, 556 (5) [M – FeCp – 2 CO]⁺, 444 (3) [M – FeCp – 6 CO]⁺, 351 (7) [M – Fe₂Cp₂ – 5 CO]⁺, 323 (7) [M – Fe₂Cp₂ – 6 CO]⁺.

3. $[\mu$ -Ethandiylbis(ammoniomethylen)]bis[tricarbonylbis(cyclopentadienyl)dieisen]-diiodid (**4c**): Zu 0.50 g (0.68 mmol) **2** in 40 ml CH₂Cl₂ tropft man 0.22 ml (1.7 mmol) einer wäßrigen HJ-Lösung und läßt 1 h rühren. Beim anschließenden Einengen fällt **4c** als dunkelrotes Öl aus, das mehrmals mit Ether kräftig verrührt wird.

Tab. 4. Analysen und physikalische Eigenschaften der Verbindungen 2-21

	Summenformel (Molmasse)	Schmp. [°C]	Gef. C Ber.	Gef. H Ber.	Gef. N Ber.	Gef Fe Ber	Gef. M[≊] Ber.
2	$C_{30}H_{24}Fe_4N_2O_6$	152	48 , 7 0	3.48	3.86		
	(731.92)		49.23	3.31	3.83		
3	$C_{31}H_{26}Fe_4N_2O_6$	160	50.31	3.86	3.62		
	+ 1/4 THF (763.97)		50.31	3.69	3.67		
4 a	$C_{30}H_{26}B_2F_8Fe_4N_2O_6$	205 -	39.70	3.79	3.09		
	(907.54)	207	39.7 0	2.89	3.09		
4b	C ₃₀ H ₂₆ Cl ₂ Fe ₄ N ₂ O ₆	201	42.45	3.63	3.30		
	+ 2/3 CH ₂ Cl ₂ (861.46)	(Zers.)	42.76	3.35	3.25		
4c	$C_{30}H_{26}Fe_{4}I_{2}N_{2}O_{6}$	210 -	35,32	3.04	2.70		
	+ 1/2 CH ₂ Cl ₂ (1030 20)	212	35.56	2.64	2.72		
5	C12H10B2F8Fe4N2O6	180 -	38.37	3.86	3.11		
	+ CH ₂ Cl ₂ (1020 53)	182	38.84	3.16	2.75		
6a	C30H24Cl2Fe4MnN2O6	73	41.13	2.87	3.28	25.82	6.56 (Mn)
	+ 1/4 CH ₂ Cl ₂ (878.99)	(Zers.)	41.33	2.81	3.19	25 41	6.25
6b	C30H24Br2Fe4MnN2O6	65	37.34	2.64	2.95	22.61	5.65 (Mn)
	+ 1/3 CH ₂ Ch (974,98)	(Zers.)	37.37	2,55	2.87	22.91	5.63
7	C30H24Cl2FesN2O6	57	41.32	2.85	3.30	31.80	
	(858 67)	(Zers.)	41.96	2.82	3.26	32 52	
7 (b)	CanHadClaFe <naos< th=""><th>59</th><th>39.25</th><th>2.87</th><th>3.16</th><th>29 18</th><th></th></naos<>	59	39.25	2.87	3.16	29 18	
	+ 2/3 CHCb (938 25)	(Zers)	39.26	2.65	3.00	29.76	
8	CareHaaClaCoEerNaOr	75	40.93	2.86	3.24		6.60 (Co)
ŭ	+ 1/4 CH ₂ Ch (882.99)	(Zers.)	41.15	2.80	3.17		6.67
0	CasHa ClaFe NiNaO	65	40.79	3.02	3 36	25.40	6.70 (Ni)
74	+ 1/4 CH_CL (882 77)	(7 are)	41.16	2.80	3.17	25.40	6.65
0.6	CasHa BraFe NiNaO	(ZCIS.)	37.70	3.08	3 30	4551	0.05
90	(050.45)	(7 ara)	37.27	3.00	2.05		
10		(Zeis.)	21.91	2.55	2 93	24.20	
10	C30H24Cl2Fe4N2O6P0	84 (7)	30.00	2.08	3.11	24,20	
	$+ 1/4 CH_2 CI_2 (930.46)$	(Zers.)	39.00	2.03	3.01	24 01	
11	C30H24CI2FE4IN2O6F1	0.) (7)	30.42	2,00	2.42	21.22	
	+ 1/3 C6115CN (1032.29)	(Zers.)	37.02	2.21	3.17	21.04	
12a	$C_{30}H_{24}Cl_2CuFe_4N_2O_6$	/6	41.99	2.98	3.29	26.54	
	(866.36)	(Zers.)	41.59	2.79	3.23	25.78	
125	$C_{30}H_{24}Br_2CuFe_4N_2O_6$	73	37.29	2.74	3.07	23.48	
	(955.27)	(Zers.)	37.72	2.53	2.93	23.38	
13a	$\mathrm{C}_{30}\mathrm{H}_{24}\mathrm{Cl}_{2}\mathrm{Fe}_{4}\mathrm{N}_{2}\mathrm{O}_{6}\mathrm{Zn}$	67	40.63	3.08	3 26	26.30	7.90 (Zn)
	+ 1/4 CH ₂ Cl ₂ (889.43)	(Zers.)	40.85	2.78	3 1 5	25.11	7.35
13b	$C_{30}H_{24}Fe_4I_2N_2O_6Zn$	72	34.10	2.48	2.69	21 12	6.03 (Zn)
	(1051.09)	(Zers.)	34.28	2.30	2.67	21 25	6 22
13c	$C_{34}H_{34}Fe_4N_2O_{12}Zn$	89	42 94	3.35	3.00	23.44	5.60 (Zn)
	(951 42)	(Zers)	42.92	3.60	2.94	23 48	6.87
14a	$C_{30}H_{24}CdCl_2Fc_4N_2O_6$	58	38.49	2 95	3.07	23.30	11.20 (Cd)
	+ 1/4 CH ₂ Cl ₂ (936.46)	(Zers.)	38 80	2.64	2 99	23.85	12.00
14b	C ₃₀ H ₂₄ CdFe ₄ I ₂ N ₂ O ₆	62	32.32	2.51	2.52	19.40	10.00 (Cd)
	(1098.12)	(Zers)	32.81	2.20	2.55	20.34	10.24
15	C ₃₀ H ₂₄ Cl ₂ Fe ₄ HgN ₂ O ₆	73	33.21	2.52	2.74		
	+ 1.5 CH ₂ Cl ₂ (1130.81)	(Zers.)	33.46	2.41	2.48		
16	$C_{34}H_{24}Fe_4MoN_2O_{10}$	70	41 48	2.85	2.99		
	+ 1/2 CH ₂ Cl ₂ (982.36)	(Zers.)	42.18	2.57	2.85		
17	$C_{31}H_{26}Cl_2Fe_5N_2O_6$	60	38.48	3.00	2.90	30.80	
	+ CH ₂ Cl ₂ (957.63)	(Zers.)	40.14	2.95	2.93	29.16	
18	$C_{31}H_{26}Cl_2CoFe_4N_2O_6$	78	40.97	3.09	3.20	25 00	6.90 (Ca)
	+ 1/4 CH ₂ Cl ₂ (897.02)	(Zers.)	41.84	2.98	3.12	24.90	6 57
19	$C_{31}H_{26}Cl_2Fe_4N_2O_6Pd$	86	40.39	3.07	3.19	23 70	
	(923.25)	(Zers.)	40.33	2.84	3.03	24,19	
20	C31H26Fe4l2N2O6Zn	75	34.08	2.59	2.60	19.19	6.10 (Zn)
	(1065.11)	(Zers.)	34,96	2.46	2.63	20.97	6 14
21	$C_{31}H_{26}CdFe_4I_2N_2O_6$	67	32.85	2.67	2 69	19.20	9 80 (Cd)
	(1112.14)	(Zers.)	33,48	2.36	2 52	20.09	10 10

^[a] Sonstige Metalle. – ^[b] Ansatz in CHCl₃.

Das erhaltene rote mikrokristalline Pulver ist nahezu analysenrein. Ausb. 0.62 g (88%).

4. {μ-Ethandiylbis [(methylammonio)methylen]}bis [tricarbonylbis(cyclopentadienyl)dieisen]-bis(tetrafluoroborat) (5): Eine Lö-

Chem. Ber. 1994, 127, 621-629

627

sung von 50 mg (0.34 mmol) säurefreiem Trimethyloxonium-tetrafluoroborat und 0.12 g (0.16 mmol) 2 in 20 ml Dichlormethan wird 3 h bei Raumtemp, gerührt. Das ausfallende hellrote Pulver wäscht man anschließend zweimal mit je 10 ml CH2Cl2 und dreimal mit je 10 ml Ether. Ausb. 0.12 g (71%). Die Substanz kann wegen ihrer Schwerlöslichkeit nicht umkristallisiert werden. Leitfähigkeit (ca. $2.0 \cdot 10^{-4}$ M Lösung in Aceton, 20°C): S = 190.4 cm/mol. - MS (pos-FAB), m/z (%): 849 (1) [M]⁺, 747 (2) [M - Me - BF₄]⁺, 570 (3) $[Fe_3Cp_3(CO)_4CNC_2H_4NC]^+$, 421 (3), $[Fe_2Cp_2(CO)_3CNC_2^-]$ H₄NC]⁺, 337 (5) [Fe₂Cp₂CNC₂H₄NC]⁺. - Auch bei der 1:1-Umsetzung von 2 mit Trimethyloxonium-tetrafluoroborat wurde wieder der dialkylierte Komplex 5 neben 2 isoliert.

5. Tetraeisenmangan-Komplexe 6a, b: Eine Lösung von 0.32 g (0.44 mmol) 2 in 30 ml Dichlormethan wird mit einer methanolischen Lösung von 0.055 g (0.44 mmol) wasserfreiem MnCl₂ oder 0.094 g (0.44 mmol) MnBr₂ versetzt. Nach 3 h entfernt man das Lösungsmittel vollständig i. Vak. und fügt 20 ml CH₂Cl₂ hinzu. Der ungelöste hellrote Feststoff wird abgefrittet und mit 5 ml EtOH, 10 ml CH₂Cl₂ und Ether gewaschen. Hellrote Mikrokristalle, 6a: 0.33 g (86%); 6b: 0.33 g (79%).

6. Pentaeisen-Komplex 7: 0.25 g (0.34 mmol) 2 und 0.043 g (0.34 mmol) wasserfreies FeCl₂ (MeOH-Lösung) werden in 25 ml CH₂Cl₂ 3 h gerührt. Den hellroten Niederschlag wäscht man mit MeOH, CH₂Cl₂ und Ether und trocknet im Hochvak. Ausb. 0.28 g (86%). Ein alternativer Zugang zu 7 besteht in einer kontrollierten Zersetzung von 2: Eine Lösung von 0.30 g (0.4 mmol) 2 in frisch destilliertem CHCl₃ wird 6 h zum Sieden erhitzt. Das ausfallende hellrote Pulver wird abfiltriert, mit Ether gewaschen und getrocknet. Ausb. 0.11 g (30%).

7. Pentaeisen-Komplex 17: Zu einer Lösung von 0.20 g (0.27 mmol) 3 in 25 ml CH₂Cl₂ wird eine methanolische (2 ml) Lösung von 0.034 g (0.2 mmol) FeCl₂ pipettiert. Es wird 3 h gerührt. Dann engt man zur Trockene ein, digeriert den Rückstand mit 20 ml Dichlormethan, filtriert, engt die rote Lösung auf 10 ml ein und versetzt unter kräftigem Rühren mit 10 ml Petrolether. Den mikrokristallinen Niederschlag löst man wieder in CH2Cl2 und überschichtet mit Petrolether. Um 17 analysenrein zu erhalten, wird zweimal aus CH₂Cl₂/Petrolether umgefällt. Ausb. 0.11 g (43%).

8. Komplexe 8, 9a, b, 12a, b und 18: In 25 ml CH₂Cl₂ werden 0.25 g (0.34 mmol) 2 bzw. 3 und 0.044 g (0.34 mmol) wasserfreies CoCl₂ (Acetonitril-Lösung) [bzw. 0.08 g (0.34 mmol) NiCl₂ · 6 H₂O (MeOH-Lösung), 0.07 g (0.34 mmol) wasserfreies NiBr₂ (Methanol-Lösung), 0.046 g (0.34 mmol) CuCl₂ (97%) (Ethanol-Lösung) oder 0.076 g (0.34 mmol) CuBr₂ (97%) (Ethanol-Lösung)] 3 h gerührt. Das ausfallende Rohprodukt wird abfiltriert und mehrmals mit Methanol (9a, b) oder Ethanol (12a, b) sowie mit Dichlormethan und Ether gewaschen. Graue amorphe Pulver [8: 0.25 g (85%); **18**: 0.24 g (81%)]; hellrote Mikrokristalle [**9a**: 0.26 g (86%); **9b**: 0.15 g (46%)]; weinrote Mikrokristalle [12a: 0.21 g (71%); 12b: 0.27 g (84%)].

Alternative Vorschrift für 9a: Eine Lösung von 0.35 g (0.48 mmol) 2 und 0.066 g (0.24 mmol) [Ni(COD)₂] in 25 ml CH₂Cl₂ wird 2 h gerührt. Anschließend wird das ausgefallene hellrote Produkt abfiltriert und gründlich mit THF, CH₂Cl₂ und Petrolether gewaschen. Ausb. 0.20 g (94%, bezogen auf [Ni(COD)2]), hellrote Mikrokristalle. Aus der Mutterlauge läßt sich durch Überschichten mit Petrolether überschüssiges 2 zurückgewinnen.

9. Tetraeisenpalladium-Komplexe 20 und 19: 0.35 g (0.48 mmol) 2 bzw. 3 werden mit 0.18 g (0.48 mmol) [PdCl₂(NCPh)₂] in 30 ml CH₂Cl₂ zur Reaktion gebracht. Nach 3stdg. Rühren bei Raumtemperatur engt man die dunkelrote Lösung ein und überschichtet mit wenig Ether. Bei 6°C fallen 10 bzw. 19 in Form dunkelroter Kristalle aus, welche beim Herausnehmen aus der Mutterlauge unter Abgabe von CH_2Cl_2 zu einem dunkelroten Pulver [10: 0.41 g (92%); 19: 0.38 g (88%)] zerfallen.

10. Tetraeisenplatin-Komplex 11: Eine Lösung von 0.20 g (0.27 mmol) 2 und 0.13 g (0.27 mmol) [PtCl₂(NCPh)₂] in 30 ml THF wird 3 h zum Sieden erhitzt. Die immer noch tiefrote Lösung engt man auf 10 ml ein, fügt 10 ml Ether hinzu und rührt so lange, bis Verbindung 11 mikrokristallin ausfällt. Anschließend wird das hellrote Rohprodukt mehrmals mit Ether gewaschen und im Hochvak. getrocknet. Ausb. 0.12 g (42%).

11. Pentametall-Komplexe 13a, b, 14a, b, 20 und 21: Eine Lösung von 0.50 g (0.68 mmol) 2 bzw. 3 in 30 ml CH₂Cl₂ wird mit 0.31 ml einer 2.2 M Zinkchlorid/Ether-Lösung in CH₂Cl₂ [bzw. mit 0.12 g (0.68 mmol) wasserfreiem CdCl₂ (MeOH-Lösung), 0.22 g (0.68 mmol) Znl₂ (heterogen), 0.25 g (0.68 mmol) Cdl₂ (MeOH-Lösung oder heterogen)] versetzt. Nach 2 h wird das ausgefallene hellrote Rohprodukt abfiltriert und mehrmals mit CH₂Cl₂ und Ether gewaschen. Im Falle der CdI₂-Addukte 14b und 21 engt man die Reaktionslösung auf ein Volumen von 10 ml ein, überschichtet mit 2 ml *n*-Hexan und kühlt auf 6°C ab. Zur weiteren Reinigung können die Verbindungen 13a, b und 20 aus THF/Ether und 14a, b und 21 aus CH₂Cl₂/*n*-Hexan umkristallisiert werden. Hellrote Mikrokristalle [13a: 0.49 g (83%); 14a: 0.56 (90%); 13b: 0.65 g (90%); 20: 0.62 g (87%)]; hellrote Kristalle [14b: 0.69 g (93%); 21: 0.67 g (89%)].

12. Tetraeisenzink-Komplex 13c: Eine Lösung von 0.10 g Zn(OAc)₂ \cdot H₂O (0.48 mmol) in 3 ml MeOH wird zu einer Lösung von 0.35 g (0.48 mmol) 2 in 30 ml CH₂Cl₂ getropft. Nach 3stdg. Rühren reduziert man das Lösungsvolumen auf 10 ml, überschichtet mit 5 ml Ether und läßt bei -18° C auskristallisieren. 0.36 g (80%) rote Kristalle.

13. Tetraeisenquecksilber-Komplex 15: Eine Lösung von 0.45 g (0.61 mmol) 2 und 0.17 g (0.61 mmol) HgCl₂ (EtOH-Lösung) in 30 ml Dichlormethan wird 3 h gerührt. Nach Einengen auf 10 ml fällt wenig hellrotes mikrokristallines Produkt aus, welches gründlich mit CH₂Cl₂ und Ether gewaschen wird. Ausb. 0.12 g (17%). Anschließend überschichtet man die Reaktionslösung mit 5 ml Ether, worauf sich bei -18° C 0.31 g eines braun-hellroten Pulvers abscheiden. Hierbei handelt es sich um nicht weiter untersuchte Spaltungsprodukte.

14. Tetraeisenmolybdän-Komplex 16: Eine THF-Lösung (40 ml) von 0.51 g (0.7 mmol) 2 und 0.21 g (0.7 mmol) [Mo(CO)₄ η -C₇H₈] wird 45 min zum Sieden erhitzt und anschließend 2 h bei Raumtemp. gerührt. Nach Reduktion des Lösungsvolumens auf ca. 10 ml fällt 16 in Form roter Mikrokristalle aus, welche abfiltriert und gründlich mit Ether gewaschen werden. Um weiteres Produkt zu erhalten, engt man die Mutterlauge zur Trockene ein und kristallisiert aus CH₂Cl₂/Ether um. 0.60 g (87%) rotes mikrokristallines Pulver bzw. nadelförmige Kristalle.

15. Röntgenstrukturanalyse von **14b**^[33]: C₃₀H₂₄CdFe₄I₂N₂O₆ + 2 CH₂Cl₂ (Molmasse 1267.95 g mol⁻¹) aus Dichlormethan/*n*-Hexan-Lösung bei 6°C. Die Einkristalle zerfallen an Luft und im Mark-Röhrchen innerhalb einer Woche unter Abgabe der in das Kristallgitter eingebauten Lösungsmittelmoleküle. Ein Kristall der Größe 0.28 × 0.63 × 0.9 mm wurde auf eine Glaskapillare aufgeklebt und bei -60°C sofort diffraktometrisch vermessen. Die Bestimmung der Gitterkonstanten [*Pbnc* (Nr. 60); *a* = 11.243(4), *b* = 15.240(2), *c* = 23.683(5) Å, mit *V* = 4057.8 Å³, *d*_{ber} = 2.076 g/cm³, *Z* = 4, μ = 36.2 cm⁻¹] und die Messung der Reflexintensitäten [4439, davon 3486 mit *I* ≥ 3 σ (*I*)] wurden auf einem Stoe-Vierkreisdiffraktometer (Mo-*K_a*-Strahlung, λ = 0.71069 Å, Graphit-Monochromator, $\omega/2\Theta$ -Abtastung, Meßgeschwindigkeit, 12 s/grd $< t \le 72$ s/ grd, 4° $\leq 2\Theta \le 54^{\circ}$, (*h* 0/14, *k* 0/19, *l* 0/30), -60° C) vorgenommen. Die Lösung der Struktur erfolgte mittels direkter Methoden (Rechenprogramm XTAL 3^[34a]) und sukzessiver Fourier- und Differenz-Fourier-Synthesen, die Verfeinerung (231 Parameter) nach der Methode der kleinsten Fehlerquadrate unter Minimierung der Funktion $\Sigma w(|F_0| - |F_c|)^2$ mit dem Wichtungsschema w = 1/ $\sigma(I)$. Eine abschließende Absorptionskorrektur (0.750 $\leq A \leq$ 1.487, DIFABS^[34b]) senkte den *R*-Wert auf 0.048 ($R_w = 0.051$). Abb. 1 wurde mit dem Programm ORTEP erstellt^[34c].

- ^{*} Herrn Professor Dr. O. J. Scherer zum 60. Geburtstag gewidmet.
 ^[1] Übersicht: W. P. Fehlhammer, H. Stolzenberg in Comprehensive Organometallic Chemistry (Hrsg.: G. Wilkinson, F. G. A. Stone,
- E. G. A. Abel), Pergamon Press, Oxford, 1982, Bd. 4, S. 513.
- [2] F. A. Cotton, B. A. Frenz, Inorg. Chem. 1974, 13, 253-256.
 [3] J. D. Hunt, O. S. Mills, Acta Crystallogr., Sect. B, 1977, 33,
- ¹⁵ J. D. Hunt, O. S. Mills, *Acta Crystallogr., Sect. B*, 1977, 33, 2432–2435.
- **1980**, *197*, 327–334.
- [6] P. M. Treichel, J. J. Benedict, R. W. Hess, J. P. Stenson, J. Chem. Soc., Chem. Commun. 1970, 1627.
- [7] S. Willis, A. R. Manning, J. Organomet. Chem. 1975, 97, C49-C50.
- [8] S. Willis, A. R. Manning, F. S. Stephens, J. Chem. Soc., Dalton Trans. 1979, 23–27.
- [9] [9a] S. Willis, A. R. Manning, F. S. Stephens, J. Chem. Soc., Dalton Trans. 1980, 186–191. – [9b] A. R. Manning, P. Murray, J. Chem. Soc., Dalton Trans. 1986, 2399–2404.
- [10] [10a] B. Callan, A. R. Manning, J. Chem. Soc., Chem. Commun. 1983, 263-264. – ^[10b] B. Callan, A. R. Manning, J. Organomet. Chem. 1987, 331, 357-377.
- [11] [11a] R. Kumar, A. R. Manning, J. Organomet. Chem. 1981, 216, C61-C63. – ^[11b] A. R. Manning, Coord. Chem. Rev. 1983, 51, 41-67. – ^[11c] P. Donegan, A. R. Manning, J. Organomet. Chem. 1987, 336, 115-128.
- ^[12] A. R. Manning, R. Kumar, S. Willis, *Inorg. Chim. Acta* **1982**, 61, 141–147.
- [13] W. P. Fehlhammer, S. Schrölkamp, W. Sperber, *Inorg. Chim. Acta* 1993, 212, 207-217.
- ^[14] J. A. S. Howell, A. J. Rowan, *J. Chem. Soc., Dalton Trans.* **1981**, 297–301.
- [15] J. A. S. Howell, A. J. Rowan, J. Chem. Soc., Dalton Trans. 1980, 503-510.
- [16] S. Willis, A. R. Manning, J. Chem. Soc., Dalton Trans. 1981, 322-323.
- ^[17a] R. D. Adams, F. A. Cotton, *Inorg. Chim. Acta* 1973, 7, 153.
 ^[17b] R. D. Adams, F. A. Cotton, *J. Am. Chem. Soc.* 1973, 95, 6589.
 ^[17c] R. D. Adams, F. A. Cotton in *Dynamic Nuclear Magnetic Resonance Spectroscopy* (Hrsg.: L. M. Jackman, F. A. Cotton), Academic Press, New York, 1975.
 ^[17d] Die Bildung von [Fe₂Cp₂(CO)₂(µ-CNR₂)(µ-CNH₂)]²⁺ aus [Fe₂(CN)Cp₂-(CO)₂(µ-CNR₂)] und zwei Aquivalenten HO₃SCF₃ läßt indes vermuten, daß für terminal ⇔ Brücke-Ligandwanderungen auch andere Mechanismen zur Disposition stehen: R. Manning, persönliche Mitteilung.
- ning, persönliche Mitteilung. ^[18] ^[18a] W. P. Fehlhammer, A. Mayr, H. Stolzenberg, Angew. Chem. **1979**, 91, 661–662; Angew. Chem. Int. Ed. Engl. **1979**, 18, 626. – ^[18b] W. P. Fehlhammer, H. Stolzenberg, Inorg. Chim. Acta **1980**, 44, L151–L152. – ^[18c] H. Stolzenberg, W. P. Fehlhammer, J. Organomet. Chem. **1983**, 246, 105–114.
- ^[19] (^{19a]} A. Völkl, Dissertation, Universität Erlangen-Nürnberg, 1983. – ^[19b] U. Eckert, Dissertation, Freie Universität Berlin, 1992.
- ^[20] C. M. Lukehart, Acc. Chem. Res. 1981, 14, 109-116.
- ^[21] W. Kläui, Angew. Chem. **1990**, 102, 661-670; Angew. Chem. Int. Ed. Engl. **1990**, 29, 627.
- ^[22] Entgegen früher geäußerten Ansichten können jedoch bereits relativ kurzkettige Di- und Triisocyanide als zwei- und dreizähnige C-Chelatliganden fungieren: F. A. Hahn, Angew. Chem. **1993**, 105, 681–696; Angew. Chem. Int. Ed. Engl. **1993**, 32, 650–665.
- ^[23] Die Cp- und CO_t-Liganden der beiden [Fe₂]-Einheiten können

Chem. Ber. 1994, 127, 621-629

bezüglich einer durch I, Cd und I' gelegten Spiegelebene symmetrisch (syn) oder asymmetrisch (anti) angeordnet sein.

- ^[24] Vgl. z. B. S. L. Mukerjee, S. P. Nolan, C. D. Hoff, R. L. de la Vega, *Inorg. Chem.* 1988, 27, 81–85.
- ^[25] G. van Koten, K. Vrieze, Adv. Organomet. Chem. 1982, 21, 151 - 239.
- ^[26] E. D. Jemmis, A. R. Pinhas, R. Hoffmann, J. Am. Chem. Soc. **1980**, 102, 2576-2585.
- ^[27] Zum Vergleich wurden Strukturdaten von Dichloro(N,N'-chelat)zink-Komplexen herangezogen, da von entsprechenden Cadmiumverbindungen keine Röntgenstrukturanalysen vorlie-gen. Siehe Lit.^[13] und die dort zitierte Literatur.
- ^[28] G. Cox, C. Dowling, A. R. Manning, P. McArdle, D. Cunningham, J. Organomet. Chem. 1992, 438, 143-158.
- ^[29] W. P. Fehlhammer, F. Schoder, G. Beck, S. Schrölkamp, Z. Anorg. Allg. Chem. 1993, 619, 1171-1176.
- [30] [30a] R. B. King, F. G. A. Stone, *Inorg. Synth.* 1963, 7, 110. –
 [30b] W. P. Fehlhammer, W. A. Hermann, K. Öfele in *Handbuch*

der Präparativen Anorganischen Chemie (Hrsg.: G. Brauer), Ferdinand Enke, Stuttgart, 1981, Band III.

- Zur Entfernung geringer Mengen paramagnetischer Verunreini-gungen wird die Probelösung durch einen Chromafil[®]-Einmal-[31] [32] J. A. Labinger, S. Madhaven, J. Organomet. Chem. 1977, 134, 381-389.
- ^[33] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57753, der Autorennamen und des Zeitschriftenzitats an-
- ^[34] [^{34a]} S. R. Hall, J. M. Stewart, XTAL 2. 2, University of Western Australia and University of Maryland. [^{34b]} N. Walker, D. Stuart, Acta Crystallogr, Sect. A, **1983**, 39, 158. [^{34c]} C. K. Johnson, ORTEP II, Rep. ORNL-5138, Oak Ridge National Laboratory, Oak Pidga, TNL USA, 1970 Laboratory, Oak Ridge, TN, USA, 1970.

[322/93]